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Bayesian Decision Theory
S

e Bayesian Decision Theory is a fundamental
statistical approach that quantifies the trade offs
between various decisions using probabilities and
costs that accompany such decisions.

e First, we will assume that all probabilities are
known.

e Then, we will study the cases where the
probabilistic structure is not completely known.



Fish Sorting Example

«_ _ ]
e State of nature is a random variable.

e Define w as the type of fish we observe (state of
nature, class) where

- w = w1 for sea bass,
—- w = w2 for salmon.

- P(w1) is the a priori probability that the next fish is a sea
bass.

- P(w2) is the a priori probability that the next fish is a
salmon.



Prior Probabilities
« "/ /7

e Prior probabilities reflect our knowledge of
how likely each type of fish will appear before
we actually see it.

e How can we choose P(w1) and P(w2)?
- Set P(w1) = P(w2) if they are equiprobable
(uniform priors).
- May use different values depending on the fishing
area, time of the year, etc.

e Assume there are no other types of fish
- P(w1) + P(w2) = 1



Making a Decision
S

e How can we make a decision with only the prior
information?

wy  If Pluy) > Plw
Decide | (w1) (w2)
w, otherwise

e \What is the probability of error for this decision?
- P(error ) = min{P(w1), P(w2)}



Making a Decision
S

e Decision rule with only the prior information
— Decide w, if P(w,) > P(w,) otherwise decide w,

e Make further measurement and compute
the class —conditional densities



Class-Conditional Probabilities

e Let's try to improve the decision using the lightness
measurement Xx.

e Let x be a continuous random variable.

e Define p(x]wj) as the class-conditional probability
density (probability of x given that the state of nature
iIs wj forj=1, 2).

e p(x|jw1) and p(x|w2) describe the difference in
lightness between populations of sea bass and
salmon



Class-Conditional Probabilities

a8

= Ia Il Iz 43 I4 ]

Hypothetical class-conditional probability density functions for
two classes.



Posterior Probabilities

e Suppose we know P(wj) and p(x|wj) forj =1, 2, and measure
the lightness of a fish as the value x.

e Define P(wj |x) as the a posteriori probability (probability of
the state of nature being wj given the measurement of feature
value x).

e \We can use the Bayes formula to convert the prior probability
to the posterior probability
p(x|w;)P(w;)

P(w;|z) = ey

p(z) = 37, p(x|w;) P(w;)

e where



Posterior Probabilities (remember)

Prior Probability: The
total probability of correct
class being class @

Likelihood: The (conditional) probability of
observing a feature value of x, given that the
correct class is @..

Posterior Probability: The
(conditional) probability of correct Evidence: The total probability of
class being @, given that feature observing the feature value as x

value x has been observed




Posterior Probabilities (remember)
S

Posterior = (Likelihood . Prior) / Evidence



Making a Decision
S

e p(x|wj) is called the likelihood and p(x) is called the evidence.
e How can we make a decision after observing the value of x?

. wy If P(w:|x) > P(ws|x)
Decide ,
w-  otherwise



Making a Decision

e Decision strategy: Given the posterior probabilities
for each class

X is an observation for which:

if P(w, | x)>P(w,/x) ——> True state of nature = o,
it Plw, [ x) < Plw, [ x) —)> True state of nature = @,



Making a Decision
S

e p(x|wj) is called the likelihood and p(x) is called the evidence.
e How can we make a decision after observing the value of x?

. wy  If Plwi|z) > Plws|x
Decide ! ( 1.| ) (] )
w-  otherwise

e Rewriting the rule gives

( o plz|w)  P(ws)
Decide iy W fm) P Eeay)
wo otherwise

e Note that, at every x, P(w1|x) + P(w2|x) = 1.



Probability of Error
S

e What is the probability of error for this decision?

P(error|x) = {

P(wy|z) if we decide w-

P(ws|x) if we decide w;
e What is the probability of error?

P(error) = / p(error,x)dxr = f P(error|z) p(x) dx

O



Probability of Error
S

e Decision strategy for Minimizing the
probability of error

e Decide o, if Pl(w, | x) > P(w, | x),
otherwise decide w,

Therefore:
Plerror [ x) = min [P(w, | x), P(w, [ x)]
(Bayes decision)



Probability of Error
S

e What is the probability of error for this decision?

P(error|z) =
P(ws|z) if we decide w;
e \What is the probability of error?

Plerror) = / plerror,x)dr = / P(error|x) p(x) dz

P(wi|z) if we decide w,

e Bayes decision rule minimizes this error because

P(error|r) = min{ P(w,|x), P(ws|x)}



Example

Let blue, green, and red be three classes with prior probabilities given by
P::' h]'..lf'_‘_:i —
P{ green) =

F.[ t‘E!-EL'I -

| bS] g ]



Example (cont.)
|

These three classes correspond to sets of objects coloured blue, green and red

e EE

respectively. Let there be three types of objects—""pencils”, “pens”, and “paper”. Let
the class-conditional probabilities of these objects be

|
P( pencil | green) = %: P[ pen | green) = E P{ paper | green) = % (4.7)
i 1
. 1 1 1 g
P( pencil | blue) = E:F’{ pen| blue) = e P( paper | blue) = % (4.8]

1

P(pencil | red) = :

(4.9]

2] =t

1
: P{pen r&d;.=§_-P::p3per red) =



Example (cont.)
S

Assign colours to objects.



Example (cont.)

Consider a collection of pencil, pen, and paper with equal probabilities. We can
decide the corresponding class labels, using Baves classifier, as follows:

P{green | pencil) =

P{ pencil | green) P{green) (110}
Pipencil | green)P{green) + P(pencil | blug)P(blue) + P{pencil | red)P({red)'™

which is given by

P{green | pencil) =




Example (cont.)

Similarly, it is possible to compute P(blue | pencil) as

I 1
, 1 24 _ 4
P{ blue pﬂnm!f"ll_ll_ll_g
32 24 64
1 1
: - g4 .
Pred | pencil) = T 17 311 3



Example (cont.)
|

This would mean that we decide that pencil is a member of class “green” because
the posterior probability is 3, which is greater than the posterior probabilities of
the other classes (“red” and “blue”). The posterior probabilities for “blue” and
“red” classes are # and g respectively. So, the corresponding probability of error,
P(error | pencil) = 3.

1
Plred | pencil} = =

% P{green | pencil) =

Pz | b=

P{ blue | pencil} = %



Example (cont.)

Assign colour to PE€IN objects.

P{ blue) = = P( pencil | green) = %fF[ pen | green) = %‘-Fi’ paper | green) =
“ ) = :
|
P{ green) = — 1 ) 1
; P{ pencil | blue} = 5: P( pen| blue} = =1 P( paper blue) = =
F::_ rE'ij.:: — i = i

. 1 1 _ 1
Plpencil | red) = E:F{p&n red) = ﬁ:_F:_]’_'IE[}Et' r.:3.~|:l;.=E

o] —



Example (cont.)
|

In a similar manner, for pen, the posterior probabilities are

1 &

: P{red | pen) = (4.14)

el [ )

Plgreen | pen) = ‘% P{blue | pen) =

L [

] |

This enables us to decide that pen belongs to class “green” and Plerror | pen) = -



Example (cont.)

Assign colour to PApPer objects.

P{ blue) = = P( pencil | green) = %fF[ pen | green) = %‘-Fi’ paper | green) =
“ ) = :
|
P{ green) = — 1 ) 1
; P{ pencil | blue} = 5: P( pen| blue} = =1 P( paper blue) = =
F::_ rE'ij.:: — i = i

. 1 1 _ 1
Plpencil | red) = E:F{p&n red) = ﬁ:_F:_]’_'IE[}Et' r.:3.~|:l;.=E

o] —



Example (cont.)
|

Finally, for paper, the posterior probabilities are

¥
P{green | paper) = =; P(blue | paper) = =; P(red | paper) =

3 i -
= |£.1a)
I

Based on these probabilities, we decide to assign paper to “red” which has the
maximum posterior probability.

50, Plerror | paper) = 2



Example (cont.)
|

Average probability of error =

, 1 i il : T
FPlerror | pencil) x =+ Plerror | pen) x -k Plerror | paper} x =

K

As a consequence, its value is

Average probability of error= = s == o+ o o= —

i 7 i
'-\.-L' |



Bayesian Decision Theory

How can we generalize to:

e more than one feature?
— replace the scalar x by the feature vector x

e more than two states of nature?
— just a difference in notation

e allowing actions other than just decisions?
— allow the possibility of rejection

e different risks in the decision?
— define how costly each action is



Bayesian Decision Theory

o Let{w1,...,wc} be the finite set of ¢ states of
nature (classes, categories).

e Let{a1, ..., aa} be the finite set of a possible
actions.

e Let A(ai|lwj) be the loss incurred for taking action ai
when the state of nature is wj .

e Let x be the d-component vector-valued random
variable called the feature vector .



Bayesian Decision Theory

e p(x|wj) is the class-conditional probability density
function.

e P(wj) is the prior probability that nature is in state wj .
e The posterior probability can be computed as

e where




Loss function
«_ _ ]

Allow actions and not only decide on the state of
nature. How costly an action is?

Introduce a loss function which is more general than
the probability of error

The loss function states how costly each action
taken is

Allowing actions other than classification primarily
allows the possibility of rejection

Refusing to make a decision in close or bad cases



Loss function
«_ _ ]

Let {w, w, ..., }be the set of c states of nature
(or “categories”)

Let , a(x) maps a pattern x into one of the actions from
{a, a,..., a,}, the set of possible actions

Let, A(a; / w;) be the loss incurred for taking action «;
when the category is w;



Conditional Risk
«_ _ ]

e Suppose we observe x and take action ai.

e If the true state of nature is wj , we incur the loss
A(ai|wj).
e The expected loss with taking action ai is

R(a;|x) = Z Mo |w;) P(w;|x)
j=1

which is also called the conditional risk.



Ex. Target Detection

Choose w, AMa, [ o) hit A, [ 2) false alarm

Choose w, AMa, [ w,) miss Ala, [ @2) do nothing



Minimum-Risk Classification

e The general decision rule a(x) tells us which action to take for

observation x.
e \We want to find the decision rule that minimizes the overall risk

H= /R(&(Xﬂx)p(x) dx

e Bayes decision rule minimizes the overall risk by selecting the
action ai for which R(ai|x) is minimum.

e The resulting minimum overall risk is called the Bayes risk and
is the best performance that can be achieved.




Two-Category Classification
|

e Define
a1: deciding w1,

ao: deciding wo,
Aij = Alas|wy).

e Conditional risks can be written as
R(ﬂl |X) = )\11 P(TL"1|X) e )‘\12 P(UJQ‘XL
R(&Q|X) = )\gl P(TL‘-1|X) + )‘\QQ P(?I,'Q‘X).



Two-Category Classification
|

e TThe minimum-risk decision rule becomes

) U if ()\21 == ;\ll)P(ELf”X) b (:’\12 = )\gg)P(?L‘Q|Xj
Decide ,
w->  otherwise

e This corresponds to deciding w1 if

p(x|w:) . (A12 — A22) P(w»)
p(X|i‘_L‘Q) (}\21 = )&11) P(U,‘ljl

= comparing the likelihood ratio to a threshold that is
independent of the observation x.



Optimal decision property
S

“If the likelihood ratio exceeds a threshold value
T, independent of the input pattern x, we can
take optimal actions”



Minimum-Error-Rate Classification
«_ _ ]

e Actions are decisions on classes (ai is deciding wi).

e If action ai is taken and the true state of nature is wj
, then the decision is correct if i = j and in error if i # j.

e \We want to find a decision rule that minimizes the
probability of error



Minimum-Error-Rate Classification
«_ _ ]

e Define the zero-one loss function

B mi=73 o
Maz|w;) = i S
1 11E#9
(all errors are equally costly).
e | Conditional risk becomes

R(a;|x) = Z Moz |w;) P(w;|x)

= ZP(H,‘j|X)

J7t
=1 — P(w;|x).



Minimum-Error-Rate Classification
«_ _ ]

e Minimizing the risk requires maximizing P(wi|x) and results in
the minimume-error decision rule

_ Decide wi if P(wi|x) > P(wj |x) Vj = i.

e The resulting error is called the Bayes error and is the best
performance that can be achieved.



Minimum-Error-Rate Classification
«_ _ ]

Regions of decision and zero-one loss function,
therefore:

Ay =y P(,) =0, then decide o, if : Plxlo,)

Let .
Ay—Ay Plw,) P(x|w,)

>0,



Minimum-Error-Rate Classification

The likelihood ratio p(x|w:)/p(x|ws). The threshold 4, is computed
using the priors P(w;) = 2/3 and P(ws) = 1/3, and a zero-one loss function.
If we penalize mistakes in classifying ws patterns as w; more than the
converse, we should increase the threshold to 4,.



Discriminant Functions
- ]

e A useful way of representing classifiers is through discriminant
functions gi(x), i =1, ..., c, where the classifier assigns a
feature vector x to class wi if

9i(x) > g;(x) Vj#1i
e For the classifier that minimizes conditional risk
gi(x) = —R(a;|x)

e For the classifier that minimizes error
9;(x) = P(w;|x)



Discriminant Functions

action
(e.g., classification)

COSIS

discriminant
functions

input

FIGURE 2.5. The functional structure of a general statistical pattern classitier which
includes d inputs and ¢ discriminant functions gi(x). A subsequent step determines
which of the discriminant values is the maximum, and calegorizes the input pattern
accordingly. The arrows show the direction of the flow of information, though frequently
the arrows are omitted when the direction of flow is self-evident. From: Richard O,
Duda, Peter E. Hart, and David G. Stork, Fattern Classification. Copyright © 2001 by

John Wiley & Sons, Inc.



Discriminant Functions
- ]

e These functions divide the feature space into ¢ decision regions

(R1, ..., Rc), separated by decision boundaries.
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Discriminant Functions
- ]

g,(x) can be any monotonically
increasing function of P(w;, [ x)

gix)=1(Plw; [ x))= P(x | o) F(w,)
or natural logarithm of any function of P(w, / x)
gix) =In Px [ @) +In Plw,)



Discriminant Functions
- ]

e [he two-category case

— A classifier is a “dichotomizer” that has two discriminant
functions g,and g,

Let 9(x) = 9.(x) — go(x)

Decide w, /f g(x) > 0 ; Otherwise decide w,



Discriminant Functions
- ]

e [he two-category case
- The computation of g(x)

g(x)=P(w,|x)~P(w,|x)

P(x w])_l_lnP(a)z)
P(x|w,) P(w, )

= In




Example

» Given a classification problem with the following class conditional densities,
derive a decision rule based on the Likelihood Ratio Test (assume equal priors)

1 1 =w-tof
P{Ilb.}i}:HE 2 P{ILI.IJE}:EE 2
1 z
= Solution 71—e3‘“] *
« Substituting the given likelihoods and priors into the LRT expression: A(x) = f’”’ e ' 3
——{ - <
a 4
S N -
e Simplifying the LRT expression:  A(x) - = 1
— {10y <
e? -
¢ Changing signs and taking logs: (x - 4)* - (x - 10)? zﬂ H.f B : H’:m:i
- i
" e Pix]es,) : P{x]enz)
e Which yields: x 7 i
‘ |
« This LRT result makes sense from an intuitive point of : =
X

view since the likelihoods are identical and differ only
in their mean value




Exercise
- ]

= How would the LRT decision rule change if, say, the priors were such that
P(w,)=2P(w,) ?



Example

[

Consider a classification problem with two classes : : : : : : :
defined by the following likelihcod functions T T T S S L S S

Sketch the two densities
=« What is the likelihood ratio?
s Assume Ploy [=P[eg]=0.5, by =hee=0, hyy=1 and by, =312

Determine a decision rule that minimizes the probability of 008 i

rrar
erra 1

e 23 w Os

h{:{}:

0.4

(1| SR

| B | mEn LA B '
gt 3

g




Exercise
- ]

Select the optimal decision where:

Q = {w, w0y

Px]w,) ~ N(2, 0.5) (Normal distribution)
Px ] w,) ~ N(1.5, 0.2)

Plw,) =2/3 - 1 2

Plw,) = 1/3 3 4




The Gaussian Density
|

Gaussian can be considered as a model where the feature
vectors for a given class are continuous-valued, randomly
corrupted versions of a single typical or prototype vector.

Some proper ties of the Gaussian:
Analytically tractable.
Completely specified by the 1st and 2nd moments.

Has the maximum entropy of all distributions with a given
mean and variance.

Many processes are asymptotically Gaussian (Central Limit
Theorem).

Linear transfor mations of a Gaussian are also Gaussian.



Univariate Gaussian
- ]

For x € IR:
p(z) = N(p, 0?)
1 1 (:c - ,u,)g
= exXT ——
v 2T 2 2 T
where

pn = Elzx] = f_:: z p(x) dz,

o° =Bz — p)°] = [I (x — 1)° p(x) dz.



Univariate Gaussian
- ]

Pix)
'

. i X
p-20 p-o 7 p+o p+2o

Figure 3: A univariate Gaussian distribution has roughly 95% of its area in
the range |r — p| < 20.



Multivariate Gaussian
- ]

For x € R¢:

p(x) = N(p, X)

| 1|

g
= : oy [ T

where
g = Fle] = /Kg}[x) dx,

X =FE[(x—p)(x—p)]= /(X — p)(x — p)" p(x) dx.



Linear Transformations

» Recall that, given x € R?, A € R¥*, y = ATx € R*,
if z ~ N(p,X), theny ~ N(A"u, ATSA).
» As a special case, the whitening transform

A, =PAT?

where

» P is the matrix whose columns are the orthonormal
eigenvectors of X,
» A is the diagonal matrix of the corresponding eigenvalues,

gives a covariance matrix equal to the identity matrix 1.



Linear Transformations

L NApAEA)




Mahalanobis Distance
«_ _ ]

The quantity 7?2 = (x — )T X7 *(x — ) is called
the squared Mahalanobis distance from x to pu.

Mahalanobis distance takes into account the covariance
among the the variables in calculating distance.



Mahalanobis Distance

= e

Figure 4: Samples drawn from a two-dimensional Gaussian lie in a cloud
centered on the mean u. The loci of points of constant density are the
ellipses for which (x — u)T 7' (x — u) is constant, where the eigenvectors of
3’ determine the direction and the corresponding eigenvalues determine the
length of the principal axes. The quantity r?2 = (x — u)TX " '(x — u) is called
the squared Mahalanobis distance from x to p.



Discriminant Functions for the
Gaussian Density

Assume that class conditional
density p(x / w;) is multivariate
normal

1 1 1
P(X)Z d/2| <172 exp|:__(x_ﬂ)t2_ (x_ﬂ):|
(27)"°|Z| 2




Discriminant Functions for the
Gaussian Density

» Discriminant functions for minimum-error-rate classification
can be written as

Q-j{_x) - lllp(}{h-!-"i) -+ In F[H.-’f).

» For p(x|w;) = N(p;, Xs)

1} d

: 1
g;(x) = —5(:{ — ) S (x— ) — 5 In27 — 3 In|3;| +InP(w;).



Case 1: X, = o1
.

* the simplest case,
* the features are statistically independent,
 each feature has the same variance.



Case 1: X, = o1
.

* the determinant of the }:
det Y = 0%

* Because:

=

]

[

(]

e e
|

A=| | det(A) = []au

=1




Case 1: X, = o1
.

* the inverse of of the )

>1=(1/0?) |

* Because:

a;;0 0 1/aj;0 - )

0 1/az> -0

J{(D azz 0 J A= | _
0o 0 - 0 0 - 1/ ann

dpn



Case 1: X; = ¢’
.

* by using:
det y = g2 S1=(1/0?) |

1 o d 1
gi(x): _E(x_lui) Z(x—,ui)—ganﬂ'—Eln

y

g lx)= —h_"-}:{";_”jﬂn Plo)—=g (x)=- [x—n] +InPle,)

27 dert

Z|+inP(w,)




Case 1: X, = o1
.

g (x)= —{'T'_“-}Th_pjﬂn Ple, )

-
=

2er

V

1
202

g:(x) = — [t — 2p%x + g 1+ InP(wy)



Case 1: X, = o1
.

1

g;(x) = — [xfx —2pfx + H?H:‘ |+ InP(w;)

2l

* The quadratic term is same for all functions, so we can
omit the quadratic term.



Case 1: X, = o1

Discriminant functions are

g;(x) = wix+w; (linear discriminant)

where
1
Wi= 3 Hi
il _
W;n = —‘}—0.2 f_{.f,ﬂ.z + In Pf:li.-']')

(w;n is the threshold or bias for the i'th category).



Case 1: X, = o1

Decision boundaries are the hyperplanes g;(x) = g;(x), and
can be written as

w!(x —Xq) =0
where
W = H; — ;
1 o? P(w;
XD:E(Hi+Hj}_ 1 ( ) B — Hj).

n (
s — P'fj|f? P(w;)

Hyperplane separating R; and R; passes through the point
xp and is orthogonal to the vector w.



—._\__\__ & Pt _\_\_\_\.

Figure 5: If the covariance matrices of two distributions are equal and
proportional to the identity matrix, then the distributions are spherical in d
dimensions, and the boundary is a generalized hyperplane of d — 1
dimensions, perpendicular to the line separating the means. The decision
boundary shifts as the priors are changed.



Case 1: X, = o1
.

Special case when P(w;) are the same fori =1,...,cis the
minimum-distance classifier that uses the decision rule

assign x to w;- where i = arg min ||x — p,|.

=10



