


Bayesian Decision Theory

� Bayesian Decision Theory is a fundamental 

statistical approach that quantifies the trade offs 

between various decisions using probabilities and between various decisions using probabilities and 

costs that accompany such decisions.

� First, we will assume that all probabilities are 

known.

� Then, we will study the cases where the 

probabilistic structure is not completely known.



� State of nature is a random variable.

� Define w as the type of fish we observe (state of 

nature, class) where

Fish Sorting Example

nature, class) where

– w = w1 for sea bass,

– w = w2 for salmon.

– P(w1) is the a priori probability that the next fish is a sea

bass.

– P(w2) is the a priori probability that the next fish is a 

salmon.



� Prior probabilities reflect our knowledge of 
how likely each type of fish will appear before 
we actually see it.

Prior Probabilities

we actually see it.

� How can we choose P(w1) and P(w2)?
– Set P(w1) = P(w2) if they are equiprobable 

(uniform priors).

– May use different values depending on the fishing 
area, time of the year, etc.

� Assume there are no other types of fish
– P(w1) + P(w2) = 1



� How can we make a decision with only the prior

information?

Making a Decision

� What is the probability of error for this decision?

– P(error ) = min{P(w1), P(w2)}



Making a Decision

� Decision rule with only the prior information

– Decide ω1 if P(ω1) > P(ω2) otherwise decide ω2

� Make further measurement and compute

the class –conditional densities



� Let’s try to improve the decision using the lightness

measurement x.

� Let x be a continuous random variable.

Class-Conditional Probabilities

� Let x be a continuous random variable.

� Define p(x|wj) as the class-conditional probability 

density (probability of x given that the state of nature 

is wj for j = 1, 2).

� p(x|w1) and p(x|w2) describe the difference in 

lightness between populations of sea bass and 

salmon



Class-Conditional Probabilities



� Suppose we know P(wj) and p(x|wj) for j = 1, 2, and measure 

the lightness of a fish as the value x.

� Define P(wj |x) as the a posteriori probability (probability of

the state of nature being wj given the measurement of feature 

Posterior Probabilities

the state of nature being wj given the measurement of feature 

value x).

� We can use the Bayes formula to convert the prior probability 

to the posterior probability

� where



Posterior Probabilities (remember)



Posterior Probabilities (remember)

Posterior = (Likelihood . Prior) / EvidencePosterior = (Likelihood . Prior) / Evidence



� p(x|wj) is called the likelihood and p(x) is called the evidence.

� How can we make a decision after observing the value of x?

Making a Decision



Making a Decision

� Decision strategy: Given the posterior probabilities
for each class

X is an observation for which:

if P(ω1 | x) > P(ω2 | x) True state of nature = ω1

if P(ω1 | x) < P(ω2 | x) True state of nature = ω2



� p(x|wj) is called the likelihood and p(x) is called the evidence.

� How can we make a decision after observing the value of x?

Making a Decision

� Rewriting the rule gives

� Note that, at every x, P(w1|x) + P(w2|x) = 1.



� What is the probability of error for this decision?

Probability of Error

� What is the probability of error?



Probability of Error

� Decision strategy for Minimizing the 

probability of error 

ω ω ω� Decide ω1 if P(ω1 | x) > P(ω2 | x);
otherwise decide ω2

Therefore:

P(error | x) = min [P(ω1 | x), P(ω2 | x)]

(Bayes decision)



� What is the probability of error for this decision?

Probability of Error

� What is the probability of error?

� Bayes decision rule minimizes this error because



Example



Example (cont.)



Example (cont.)

Assign colours to objects.Assign colours to objects.



Example (cont.)



Example (cont.)



Example (cont.)



Example (cont.)

Assign colour to pen objects.



Example (cont.)



Example (cont.)

Assign colour to paper objects.



Example (cont.)



Example (cont.)



How can we generalize to:
� more than one feature?

– replace the scalar x by the feature vector x

Bayesian Decision Theory

– replace the scalar x by the feature vector x

� more than two states of nature?

– just a difference in notation

� allowing actions other than just decisions?

– allow the possibility of rejection

� different risks in the decision?

– define how costly each action is



� Let {w1, . . . ,wc} be the finite set of c states of 

nature (classes, categories).

� Let {α1, . . . , αa} be the finite set of a possible 

Bayesian Decision Theory

� Let {α1, . . . , αa} be the finite set of a possible 

actions.

� Let λ(αi|wj) be the loss incurred for taking action αi 

when the state of nature is wj .

� Let x be the d-component vector-valued random 

variable called the feature vector .



� p(x|wj) is the class-conditional probability density 

function.

� P(wj) is the prior probability that nature is in state wj .

Bayesian Decision Theory

� P(wj) is the prior probability that nature is in state wj .

� The posterior probability can be computed as

� where



� Allow actions and not only decide on the state of 

nature. How costly an action is?

� Introduce a loss  function which is more general than 

Loss function

� Introduce a loss  function which is more general than 

the probability of error

� The loss function states how costly each action 

taken is

� Allowing actions other than classification primarily 

allows the possibility of rejection

� Refusing to make a decision in close or bad cases



Loss function

Let {ω1, ω2,…, ωc} be the set of c states of nature

(or “categories”)

Let , α(x) maps a pattern x into one of the actions from
{α1, α2,…, αa}, the set of possible actions

Let, λ(αi | ωj) be the loss incurred for taking action αi

when the category is ωj



� Suppose we observe x and take action αi.

� If the true state of nature is wj , we incur the loss 

λ(αi|wj).

Conditional Risk

λ(αi|wj).

� The expected loss with taking action αi is

which is also called the conditional risk.



Ex. Target Detection

Actual class ω1 (var) ω2 (yok)

Choose ω1 λ(α1 | ω1) hit λ(α1 | ω2) false alarm

Choose ω2 λ(α2 | ω1) miss λ(α2 | ω2) do nothing



� The general decision rule α(x) tells us which action to take for 

observation x.

� We want to find the decision rule that minimizes the overall risk

Minimum-Risk Classification

� Bayes decision rule minimizes the overall risk by selecting the 

action αi for which R(αi|x) is minimum.

� The resulting minimum overall risk is called the Bayes risk and 

is the best performance that can be achieved.



� Define

Two-Category Classification

� Conditional risks can be written as



� The minimum-risk decision rule becomes

Two-Category Classification

� This corresponds to deciding w1 if

⇒ comparing the likelihood ratio to a threshold that is

independent of the observation x.



Optimal decision property

“If the likelihood ratio exceeds a threshold value“If the likelihood ratio exceeds a threshold value

T, independent of the input pattern x, we can 

take optimal actions”



� Actions are decisions on classes (αi is deciding wi).

� If action αi is taken and the true state of nature is wj

, then the decision is correct if i = j and in error if i ≠ j.

Minimum-Error-Rate Classification

, then the decision is correct if i = j and in error if i ≠ j.

� We want to find a decision rule that minimizes the

probability of error



� Define the zero-one loss function

Minimum-Error-Rate Classification

(all errors are equally costly).

� I Conditional risk becomes



� Minimizing the risk requires maximizing P(wi|x) and results in 

the minimum-error decision rule

– Decide wi if P(wi|x) > P(wj |x) ∀j = i.

Minimum-Error-Rate Classification

– Decide wi if P(wi|x) > P(wj |x) ∀j = i.

� The resulting error is called the Bayes error and is the best

performance that can be achieved.



Minimum-Error-Rate Classification

Regions of decision and zero-one loss function, 

therefore:
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Minimum-Error-Rate Classification



� A useful way of representing classifiers is through discriminant 

functions gi(x), i = 1, . . . , c, where the classifier assigns a 

feature vector x to class wi if

Discriminant Functions

� For the classifier that minimizes conditional risk

� For the classifier that minimizes error



Discriminant Functions



� These functions divide the feature space into c decision regions 

(R1, . . . , Rc), separated by decision boundaries.

Discriminant Functions



Discriminant Functions

gi(x) can be any monotonically 
increasing function of P(ωi | x)increasing function of P(ωi | x)

gi(x) ≡ f (P(ωi | x) )= P(x | ωi) P(ωi)

or natural logarithm of  any function of P(ωi | x)

gi(x) = ln P(x | ωi) + ln P(ωi)



Discriminant Functions

� The two-category case

– A classifier is a “dichotomizer” that has two discriminant 

functions g1 and g2

Let g(x) ≡ g1(x) – g2(x)

Decide ω1 if g(x) > 0 ; Otherwise decide ω2



Discriminant Functions

� The two-category case

– The computation of g(x)
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Example



Exercise



Example



Exercise

Select the optimal decision where:

Ω = {ω1, ω2}

P(x | ω1) N(2, 0.5) (Normal distribution)

P(x | ω2) N(1.5, 0.2)

P(ω1) = 2/3

P(ω2) = 1/3 
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� Gaussian can be considered as a model where the feature

vectors for a given class are continuous-valued, randomly

corrupted versions of a single typical or prototype vector.

Some proper ties of the Gaussian:

The Gaussian Density

� Some proper ties of the Gaussian:

� Analytically tractable.

� Completely specified by the 1st and 2nd moments.

� Has the maximum entropy of all distributions with a given

mean and variance.

� Many processes are asymptotically Gaussian (Central Limit

Theorem).

� Linear transfor mations of a Gaussian are also Gaussian.



Univariate Gaussian



Univariate Gaussian



Multivariate Gaussian



Linear Transformations



Linear Transformations



Mahalanobis Distance

Mahalanobis distance takes into account the covariance 

among the the variables in calculating distance.



Mahalanobis Distance

• Takes into account the covariance among the the variables in 

calculating distance.



Discriminant Functions for the 
Gaussian Density

Assume that class conditional
density p(x | ωi) is multivariatedensity p(x | ωi) is multivariate
normal
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Discriminant Functions for the 
Gaussian Density



• the simplest case,

• the features are statistically independent,• the features are statistically independent,

• each feature has the same variance.



• the determinant of  the ∑:

det ∑ = σ2ddet ∑ = σ

• Because:



• the inverse of of the ∑:

∑-1 = (1/σ2) І∑ = (1/σ ) І

• Because:



• by using:

det ∑ = σ2d                         ∑-1 = (1/σ2) Іdet ∑ = σ ∑ = (1/σ ) І
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• The quadratic term is same for all functions, so we can 

omit the quadratic term.










